Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology

نویسنده

  • Stephen R. Meyers
چکیده

[1] Fundamental to the development of astronomical time scales is the recognition of oscillatory variability within stratigraphic data and its evaluation relative to a null “noise” hypothesis. In this study, Monte Carlo simulations are used to investigate the suitability of two commonly used noise hypotheses (the “conventional” and “robust” AR1 approaches), and the results highlight important limitations in both for cyclostratigraphic application. Perhaps most problematic, the robust AR1 method can result in inflated confidence level estimates and excessive clumping of false positives within the low frequency portion of the spectrum, especially when the underlying noise process has a high lag-1 autocorrelation. Given typical cyclostratigraphic records, this technique will often impose “significant” eccentricity band variability, even in the case of pure AR1 noise. An alternative spectral noise estimation method is proposed to overcome these problems, which simultaneously allows for departures from the AR1 assumption, and obtains high statistical power—that is, the ability to accurately identify astronomical signals when they are present in the data. We apply the method to un-tuned dO data from Miocene sediments of the Ceara Rise, indicating statistically significant spectral power at frequencies that are consistent with the published orbital interpretation of Weedon et al. (1997). Furthermore, evaluation of the frequency arrangement of the significant spatial bedding periods, using the average spectral misfit method for astrochronologic testing, reveals that the null hypothesis of no orbital influence can be rejected with a high degree of confidence (the 99.8% confidence level).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

IMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY

Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

A Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method

Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...

متن کامل

Characterization of the Crab Pulsar’s Timing Noise

We present a power spectral analysis of the Crab pulsar’s timing noise, mainly using radio measurements from Jodrell Bank taken over the period 1982-1989, an interval bounded by sparse data sampling and a large glitch. The power spectral analysis is complicated by nonuniform data sampling and the presence of a steep red power spectrum that can distort power spectra measurement by causing severe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012